Quando subsituímos x por um determinado valor a num polinômio, dizemos o resultado das operações neste polinômio após a substituição é um valor numérico.
1) Seja P(x) = x3 + 2x2 + 3x - 1
Fazendo x = 3, teremos:
P(3) = 33 + 2.32 + 3.3 - 1
P(3) = 27 + 2.9 + 9 - 1
P(3) = 27 + 18 + 9 -1
P(3) = 54 - 1
P(3) = 53
Portanto, 53 é um valor numérico.
Quando o valor númérico for zero, dizemos que x é raiz ou zero do polinômio.
2) Encontre os zeros da função P(x) = 2x2 + x - 1
Temos que P(x) = 0
P(x) = 2x2 + x - 1
0 = 2x2 + x - 1
2x2 + x - 1 = 0
Usando Báskara:
x' = 1/2
x'' = -1
Portanto, os zeros da função quando o valor numérico vale zero são x = 1/2 ou x = -1.
1) Sabendo que P(2) = 1 e que P(x) = 3x2 + 2mx + 5, calcule o valor de m:
P(x) = 3x2 + 2mx + 5
1 = = 3.22 + 2m2 + 5
1 = 3.4 + 4m + 5
1 = 12 + 5 + 4m
1 - 17 = 4m
-16 = 4m
-16/4 = m
-4 = m
m = -4